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Abstract
A linear scaling approach for general and accurate pseudopotential density functional theory
calculations is presented. It is based on a finite difference discretization. Effective O(N) scaling
is achieved by confining the orbitals in spherical localization regions. To improve accuracy and
flexibility while computing the smallest possible number of orbitals, we propose an algorithm
for adapting localization regions during computation. Numerical results for a polyacetylene
chain and a magnesium oxide ring are presented.

1. Introduction

One way to think about linear scaling approaches based on
localized orbitals—such as the one described in this paper—
is to consider those as linear combination of atomic orbitals
(LCAO) type methods with flexible orbitals, adapted to their
environment. Localized orbitals are expanded in a generic
numerical basis set which can be systematically improved to
achieve a prescribed accuracy.

The plane waves (PW) method is an example of
a systematically improvable basis set commonly used in
pseudopotential density functional theory (DFT) simulations,
in particular when one wants to avoid any bias due to the
numerical basis set, when high numerical accuracy is needed
or when dealing with systems such as metals with almost
free electrons. The numerical solution of the Kohn–Sham
equations—eigenstates—is expanded directly in terms of M
elementary plane waves and the accuracy of the solution
can be systematically improved by enlarging the basis set.
In contrast, linear combination of atomic orbitals (LCAO)
type methods use a numerical basis set made of atomic-
like orbitals specific to the physical system that one tries to
simulate and the solution is expressed as a linear combination
of those. In the PW approach, because the numerical basis
set is quite a bit larger than in the LCAO, we can limit the
calculation to just the few eigenstates that we are interested
in—N occupied states. In that case, the major computational
work is in determining these eigenstates—O(M · N2) scaling
with M � N—and the work in the N-dimensional subspace
defined by those states—such as inverting the overlap matrix

or determining the occupation numbers by diagonalizing an
N × N matrix—becomes quite light in comparison (O(N3)).
LCAO approaches in contrast can be viewed as methods
dealing with a fixed and predetermined subspace, of dimension
an order of magnitude larger than N , in which one needs
to determine the occupation in the form of a single-particle
density matrix.

In this paper we focus on an O(N) complexity algorithm
as an alternative to PW, sharing some of the goals and
features with this reference approach, in particular using
an unbiased and systematically improvable numerical basis
set, and calculating the minimal number of electronic states
needed in this basis set. Note that the PW basis set is just
one example of a systematically improvable and unbiased
numerical basis set. Alternative approaches such as finite
differences or finite elements achieve the same goal, each
with their pros and cons, and have been used successfully
applied in DFT simulations [1–5]. In this paper we will use
the finite difference approach as a discretization scheme. The
algorithm described below could be easily combined with other
real-space discretizations however. To reduce computational
complexity we will introduce spherical localization regions
(LR) in which the electronic states will be confined. Each state
is described by values at each point of the finite difference
grid inside a given localization region, i.e. by O(1) degrees
of freedom. To keep the number of electronic states in the
calculation as small as possible, we will allow the localization
regions to adapt their locations and sizes according to their
environment. Looking at localized orbital linear scaling
approaches as LCAO methods with a basis of flexible orbitals
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adapted to their environment, one realizes that one may
be able to reduce the number of those orbitals by making
them more flexible and still describe accurately N electronic
wavefunctions. In this paper we explore the limit of this idea:
including in the calculation a number of localized orbitals
equal to the number N of electronic states that we want to
compute accurately.

Note that the idea of representing the electronic structure
using floating orbitals was already proposed 40 years ago with
the floating spherical Gaussian orbital model [6]. In this simple
model, only four parameters per orbital—center coordinates
and radius—are optimized to minimize the total energy, while
the Gaussian shape is fixed. In that perspective the model
described in this paper additionally optimizes the shape of the
orbitals, making use of today’s much larger computer power
and leading to a much greater accuracy.

Numerous ideas have been proposed in the last 15 years to
achieve linear scaling in electronic structure calculations (see
for instance [7]). A few of those approaches are closely related
to our methodology and essentially try to achieve the same
goal, that is linear scaling with PW accuracy using localized
orbitals. Following the idea of Hernandez and Gillan [8],
the CONQUEST code was developed using B-spline finite
elements as the underlying numerical basis [9]. Note that
this code also offers a fixed orbital LCAO-like option. A
similar approach, but using a plane wave-like basis set for
localized orbitals was implemented in the ONETEP code [10].
Tsuchida and Tsukada [11] on the other hand used a finite
elements discretization in conjunction with the Kim–Mauri–
Galli functional. In contrast to the methodology presented
below, those techniques, as well as the technique described
in [12], use fixed localization regions centered on atoms. This
lack of flexibility is compensated for by a larger number of
localized orbitals.

In this paper we focus on the problem of defining
appropriate localization regions in which to confine localized
orbitals. We recently proposed an algorithm for automatically
adapting the centers of localization regions. It essentially
boils down to a regular update of the localization centers
using the center of charge of the confined orbital as the new
target. Such an approach presents several advantages over
using fixed localization regions. In particular, accuracy is
improved by optimizing the positions of localization regions. It
also enables molecular dynamics simulations without spurious
Pulay forces [13, 14]. In this paper we extend this idea and
explore a new algorithm to adapt not only the position of the
localization regions, but also their sizes. This is motivated
by the fact that calculations going beyond the ground state
of insulators often present some less localized maximally
localized generalized Wannier functions (MLGWF), or a less
peaked distribution of their spreads. Also in complex and
multi-species systems, one can expect anomalous shapes
for some MLGWF as observed for instance for amorphous
silicon [15]. Another area where size adaptation could
be quite useful is in studying systems for which electronic
structure properties vary significantly with system size and
for which determining a priori the size of LR based on
error measurement on smaller reference systems may not be
adequate.

2. Computational method

2.1. Linear scaling strategy

Our approach is based on the idea proposed in [12] and later
extended in [13, 14]. The first step to achieving linear scaling
is to express the DFT energy functional in terms of a set of
general non-orthogonal orbitals {φi}N

i=1 [16]:

EKS[{φi}N
i=1] =

N∑

i, j=1

Ki j

∫

�

φi (r)
(−∇2

)
φ j(r) dr

+ 1

2

∫

�

∫

�

ρ(r1)ρ(r2)

|r1 − r2| dr1 dr2 + EXC[ρ] (1)

+
N∑

i, j=1

2Ki j

∫

�

φi(r)(Vextφ j )(r) dr

where ρ is the electronic density

ρ(r) = 2
N∑

i, j=1

Ki jφi (r)φ j(r). (2)

The N × N matrix K is a single-particle density matrix which
expresses the occupation of each electronic state for a set of
general non-orthogonal orbitals. If only the occupied valence
states are being included in the computation, it is simply S−1,
the inverse of the overlap matrix. The energy EXC models the
exchange and correlation between electrons.

Given an external potential Vext—defined by the
various atomic species, their respective positions and
pseudopotentials—the ground state of the physical system is
obtained by minimizing the energy functional (1). We dis-
cretize this energy functional on a uniform real-space mesh.
We represent the orbitals, the electronic density and the poten-
tial by their values at each node of the mesh. To approximate
the Laplacian operator, we use the Mehrstellen finite difference
scheme [2].

To achieve an effective linear scaling, localization
constraints on the orbitals are added to this minimization
procedure. Namely we impose that each orbital strictly
vanishes outside a specific spherical localization region. We
also adapt the minimization algorithm to satisfy the constraints
along the way. Our minimization procedure is based on
the steepest descent directions preconditioned by multigrid.
The process is accelerated by a nonlinear extrapolation
scheme [13]. Note that we compute the matrix K in O(N3)

operations using a standard diagonalization procedure for an
N × N matrix. Because N is kept small by adapting the
localization regions (see section 2.3), operations on N × N
matrices remain relatively cheap for the range of values that
we are currently targeting (N up to 5000)

Restricting orbitals to confinement regions introduces
some approximation since there is in general no solution to
our original problem which satisfies exactly the localization
constraints. This truncation error however decays rapidly with
the size of the localization regions. We observed numerically
an exponential convergence for both the energy and forces
in various systems [13]. By choosing localization regions
large enough one can even reduce truncation error to a
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quantity smaller than the discretization. The minimum size
of localization regions necessary for achieving a prescribed
accuracy directly affects the crossover point, that is the
minimal system size for which any gain can be achieved by
an O(N) approach. Also, because the energy functional is no
longer invariant under rotations inside the occupied space in the
presence of localization constraints, local minima are possible
and have been observed [14].

2.2. Maximally localized generalized Wannier functions

The concept of maximally localized generalized Wannier
functions (MLGWF) is very useful in justifying and
understanding O(N) approaches based on orbital localization.
Given a position operator X̂ , one can define the center of
charge associated with X̂ for an orbital φ as

X̄(φ) = 〈φ|X̂ |φ〉. (3)

The spread associated with the operator X̂ for the orbital φ is
defined by

σX̂ (φ) =
[
〈φ|

(
X̂ − 〈φ|X̂ |φ〉

)2 |φ〉
]1/2

(4)

and quantifies the degree of localization of φ around its center
of charge X̄(φ).

The spread functional

σ 2
X̂
({φi}N

i=1) =
N∑

i=1

σ 2
X̂
(φi) (5)

expresses the total spread for the N orbitals {φi }N
i=1.

Now given a set of orthonormal functions {ψi }N
i=1, we can

define an orthogonal transformation

φi =
N∑

j=1

ai jψ j

where ai j are the matrix elements of an orthogonal matrix A.
Finding a matrix A which minimizes the sum of the spread
functional (5) associated with m position operators, positions
operators for direction x , y, z typically,

σ 2
{X̂ (k)}m

k=1
({φi}N

i=1) =
m∑

k=1

σ 2
X̂ (k)

({φi}N
i=1

)
(6)

can be formulated as a simultaneous diagonalization problem
and efficiently solved using the algorithm proposed in [17].
The functions which minimize this spread functional—not
unique in general—are by definition the maximally localized
generalized Wannier functions (MLGWF) introduced by
Marzari and Vanderbilt [18]. For periodic boundary conditions,
the position operator for extended systems proposed by
Resta [19] should be used. To avoid introducing complex
numbers, we use the equivalent six trigonometric operators
proposed in [17] (m = 6).

Being able to find a representation of the electronic
subspace in terms of localized orbitals such as MLGWF
justifies O(N) algorithms based on imposing localization

constraints on orbitals. This is illustrated in figure 1 where
MLGWF and localized orbitals obtained by minimization
under localization constraints are plotted side by side for the
C2H4 molecule. Their similarity is striking, even if MLGWF
are orthogonal while localized orbitals are not.

2.3. Adaptive localization regions

To get a linear scaling algorithm through orbital localization,
one has to choose appropriately the localization regions (LR)
in which the orbitals are going to be confined. If the dimension
of the subspace spanned by the set of localized orbitals is much
larger than the number of occupied states N , that choice is less
important since the larger number of degrees of freedom can
compensate for the lack of accuracy of the underlying orbitals.
The most straightforward solution is then to have orbitals
localized in regions centered on atoms in numbers large enough
for describing at least the valence states around each atom.
Using such an approach, one may end up with trial subspaces
that are much larger than N . Techniques usually used in
LCAO algorithms can then be used to reduce complexity in
determining the single-particle density matrix X and fill up the
occupied states [8]. Resulting unoccupied states usually have
the role of a numerical buffer and the density of states for the
highest energies is not to be considered physical [20].

Our current approach is different. As in the standard
O(N3) PW approach, we solve for and represent only the
states that we are interested in. To do that, we let the
localization regions adapt to their environment, optimizing
both their location and their size during a calculation. On the
basis of the analogy between MLGWF and localized orbitals,
we use the centers of charge defined by (3) and spreads of
the localized orbitals defined by (4) to iteratively update the
localization regions. LR centers are moved towards centers of
charge, while localization radii are rescaled to be proportional
to the spread of the confined orbitals. To avoid a diverging total
spread during the optimization process, the total volume of all
the LR is kept fixed to a constant value V0.

In summary, localization regions are adapted following
this simple scheme:

Until convergence, do:

• Iteratively minimize functional (1) for fixed LR for a fixed
number of iterations or until convergence to a certain
tolerance is reached.

• For each orbital φi , i = 1, . . . , N , compute the m
components of the centroids of charge,

Q(k)
i = 〈φi |X̂ (k)|φi〉, k = 1, . . . ,m,

and the spreads

σi =
[

m∑

k=1

〈φi |
(

X̂ (k) − Q(k)
i

)2 |φi〉
]1/2

.

• Move LR centers to Qi .
• Set LR radii to R(i)c = ασi with α such that
(4π/3)

∑N
i=1(R

i
c)

3 = V0.
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Figure 1. Two types of MLGWF in C2H4 (left) and the corresponding strictly localized orbitals obtained by O(N) scheme (right). Isovalues
are orbital dependent. Dotted lines correspond to negative isovalues. Isovalues for localized orbitals are chosen in such a way that the limit of
the localization regions appears clearly.

In a molecular dynamics simulation or geometry optimization,
just one cycle of this algorithm is usually sufficient at every
ionic step. But multiple iterations are required for a new
configuration with no good initial guess.

3. Numerical results

To illustrate the algorithms described in this paper, we use
a polyacetylene chain (C2H2)8 as a test system. This is a
convenient system since it contains a small number of electrons
but is large enough (periodic cell of length 37.12 bohr along the
chain axis) to fully contain all the localization regions in our
test and include totally disconnected ones. It allows affordable
O(N3) reference calculations for comparing with results from
the approximative O(N) scheme. We use the same geometry as
is used in other theoretical studies [21]. This system is made up
of 40 fully occupied valence states. We also consider the lowest
three empty conduction states which are fully localized on the
molecule. We use the local density approximation (LDA) to
model the exchange and correlation term.

We start by computing MLGWF for the subspace spanned
by the 40 fully occupied states as well as for the subspace
including three additional (unoccupied) states. Results are
shown in figure 2. The result obtained in the first case is quite
natural: two MLGWF on each C=C bond, one on each C–C
and C–H bond. When including three conduction states, the
situation becomes more complicated.

Figure 2. Projection in molecular plane of MLGWF for
polyacetylene chain (C2H2)8. Open circles have radii equal to half
their MLGWF spread and are centered at Wannier centers. Circles
with coincidental projections have been shifted for a better display.
(a) Number of MLGWF equal to number of fully occupied states
(40). (b) Same calculation with three additional empty states.

For the calculations with adaptive localization regions,
we first compute the ground state of the system without any
unoccupied states. LRs are centered at Wannier centers and all
have the radius of 7 bohr which is large enough for obtaining

4
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Figure 3. Positions and spreads of adaptive localized orbitals in
polyacetylene chain (C2H2)8. Open circles have radii equal to half
the spreads.

Figure 4. Density of states for polyacetylene chain (C2H2)8 with
three unoccupied states. Comparison between O(N3) calculation and
adaptive localization regions approach with an average localization
radius of 9 bohr.

an accurate density of states. Using the electronic density from
that first calculation, we compute the Kohn–Sham potential
and freeze it before adding three additional states. Three
additional LRs associated with these states are also added
and centered on three carbon atoms as uniformly as possible.
We then run our adaptive localization algorithm with a total
volume V0 corresponding to an average localization radius of
9 bohr. This leads to localization radii that range from 7 to
17 bohr, thus allowing wider spreads for some states while
preserving the accuracy of the occupied states. Positions and
spreads of optimized orbitals are shown in figure 3. The
resulting density of states is plotted in figure 4. It is almost
indistinguishable from the reference O(N3) calculation. The
error on the band gap is 0.022 eV. The localization radii are
shown in figure 5. The localized orbital with the largest spread
is shown in figure 6. It is still quite localized with respect to
the global system, but spreads over five atoms unlike in systems
with no unoccupied stages for which MLGWF typically spread
over one bond/two atoms.

As a second numerical example, we consider a magnesium
oxide ring (MgO)8. For this application, we use the PBE
exchange and correlation functional. In our pseudopotential
approximation, we treat the semicore 2p states of the Mg
atoms explicitly which leads to a total of 56 doubly occupied
orbitals for the 16-atom ring. One major difference between
this system and the previous example is the ionic nature of the
chemical bonds between oxygen and magnesium atoms. The
ratio between maximum and minimum spreads of MLGWF

Figure 5. Polyacetylene chain (C2H2)8: radii distribution for LRs
with three unoccupied states after adaptation. The average
localization radius was 9 bohr.
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Figure 6. Contour plot of adapted localized orbitals with widest
spread for polyacetylene chain (C2H2)8 calculation with three
unoccupied states and an average localization radius of 9 bohr.

is about two when considering just the occupied states. The
ground state computation of this system can benefit from
adaptive localization regions. Localization regions obtained
for this system are plotted in figure 7. Table 1 shows the
error measured on the energy and forces for calculations with
three different localization sizes. It shows in particular an
exponential decay of the error with the average radius of the
localization regions.

4. Concluding remarks

The finite difference approach provides an appropriate
framework in which to achieve plane wave accuracy and linear
scaling using localized orbitals. Flexible adaptive localization
regions enable calculation of the states of interest only, without
the need to use a larger subspace including many unoccupied
states with no physical significance. Adapting positions seems
more important than adapting sizes for simple problems where
most MLGWF have similar spreads. Localization region
adaptivity in size becomes however important in complex
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Table 1. Numerical results for (MgO)8 ring: accuracy and range of localization radius in atomic units (au). The error is defined as the
difference with the results obtained without localization constraints on the electronic wavefunctions.

Average adaptive radius 6 (bohr) 7 (bohr) 8 (bohr)

Error energy (Ha/atom) 3.4 × 10−3 9.6 × 10−4 3.1 × 10−4

Average error forces (au) 2.7 × 10−3 1.1 × 10−3 3.5 × 10−4

Range localization radius (bohr) 4.0–9.5 5.0–10.1 5.5–11.7
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Figure 7. Projection in the molecular plane of positions and radii of
adaptive localized orbitals (open circles) in (MgO)8 ring for an
average localization radius of 8 bohr. Radii have been rescaled by a
factor 0.5 for a better display.

multi-species systems or when some conduction states need to
be computed accurately.

While we have a good general understanding of the
electronic structure representation in terms of MLGWF for
the valence states in insulating systems, the situation is more
complicated when we go beyond ground state calculations
of perfect crystals or organic molecules. Having a better
understanding of the electronic structure representation by a
set of localized orbitals such as the MLGWF in general may be
key for designing efficient linear scaling algorithms applicable
to general and complex systems. Finally, error estimators
functions of truncation radii would be extremely useful in an
automatic LR adaptation scheme, in particular for systems for
which electronic structure properties vary significantly with
system size and for which determining a priori the size of LR
based on error measurement on smaller reference systems may
not be adequate.
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